
How should outliers be dealt with in linear regression analysis?
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
Why are regression problems called "regression" problems?
I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."
How to describe or visualize a multiple linear regression model
Then this simplified version can be visually shown as a simple regression as this: I'm confused on this in spite of going through appropriate material on this topic. Can someone please explain to …
regression - How to calculate the slope of a line of best fit that ...
Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: …
Multivariable vs multivariate regression - Cross Validated
Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the …
Difference between linear regression and neural network
Nov 8, 2018 · Linear regression works from mathmatical formula through taking data points (inputs) and finding a formula (using formulae) - coefficients, weights, to fit a data model.
regression - When is R squared negative? - Cross Validated
Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …
When conducting multiple regression, when should you center …
Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean …
correlation - What is the difference between linear regression on y ...
The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …